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A mathematical model is developed for calculating the life-cycle costs for a project
where the maintenance and operations (M&QO) costs change in a nonlinear manner with
time. Closed-form solutions are presented for computing the present worth of projects
with periodic cash flow profiles that can be approximated by polynomial Sfunctions. The
results show that the life-cycle cost for a project can be grossly underestimated {or
overestimated) if the M&O costs increase or decrease nonuniformly over time rather than
being constant or linear as is often assumed in project economic evaluations. The
following range of variables is examined: (1) project life from 2 to 15 years, (2) interest
rate from 0 to 30 percent per year, and (3) polynomials of order 0 to 5. Simplified
solutions for the present worth are presented for two limiting cases: extended project
lifetime and negligible interest rate. Also a simplified expression is provided for accurate
present worth M&O estimates for DSN projects. In addition, & sensitivity analysis of the
model based on graphical results and a numerical example plus tables and graphs are given
to help the reader calculate M&O life-cycle costs over a wide range of variables.

l. Introduction

In the last few years, there has been an increasing emphasis
on economic evaluations for comparing projects in the DSN.
The total expected costs of systems or modifications, over
their lifetimes, has become an important consideration to
managers and engineers in TDA and the DSN. This interest has

recently culminated in the release of the Deep Space Network
Life-Cycle Cost (LCC) Analysis Handbook and the Tracking
and Data Acquisition Standard Practice for Life-Cycle Cost
Analysis.

The TDA Standard Practice states when an LCC analysis is
required and what the analysis will contain, but does not state
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how to do the analysis. The DSN LCC Analysis Handbook
complements the Standard Practice by providing managers and
engineers with the background information and guidance to
conduct an LCC analysis. However, one of the major problems
a user faces is modeling the maintenance and operations cost
for the life of the system or systems modification. Usually one
makes a zeroth-order assumption that the M&O costs are
constant over time. This is an unrealistic assumption and has
extremely limited use.

A first-order model was developed several years ago for
M&O costs that vary in a linear manner with time (Refs. 1
and 2). The purpose of this paper is to develop closed-form
solutions for the present worth of the maintenance and opera-
tions cost profile, based on an M*™-degree polynomial approxi-
mating the cash flows. For M=0 and M =1, this general
model reduces to the usual models where one assumes that the
M&O costs are constant over time (M = 0) or where the M&O
costs increase or decrease in a linear manner with time (M= 1).
Also, two limiting cases of special interest for quick engineer-
ing project estimates are presented. These are the cases of
infinite project life and zero interest rate. The infinite life
model approximates many extended life projects that are
estimated to last well over 10 years. The zero-interest model
may be used to approximate situations where the cost of
capital is close to the inflation rate. The validity of this
approximation was developed in Ref. 3 where it was shown
that inflation and discounting largely cancel each other over
long periods.

Application of the general polynomial model is discussed
and results are presented graphically. A brief sensitivity analy-
sis is made to show the relative importance of the costs of
capital and the degree M of the cash flow polynomial. Finally,
a simplified model for evaluating DSN projects is presented.

Il. Previous LCC Mathematical Models
A. Zeroth-Order Model

The zeroth-order approximation that is often made in
economic analysis is to assume that the M&O costs are con-
stant each year. For this simple model, the present worth
factor (P/G,, i, n) of the life-cycle M&O costs for an n-year
project and an interest rate i for a unit cash flow of $1 per
year is shown below and developed in Refs. 1 and 2.

-1 _,
@Gy im = LT 5y
i1+ )"

The notation (P/G,,, i, n) will be used throughout the
paper. P represents the present worth of the life-cycle costs.
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G, represents the order of the cash flow profile where M =0
is a constant cash flow, M =1 is a linear cash flow, etc. The ¢
represents the interest rate used for the present worth calcula-
tion and » denotes the life of the project.

Needless to say the zeroth-order model has very limited
application to most real problems where costs are rarely con-
stant over time. In the next section we will consider a first-
order model.

B. First Order Model

A mathematical model for calculating the life-cycle costs of
a project where the M&O costs increase or decrease in a linear
manner with time has been treated in detail in Refs. 1 and 2.

From Refs. 1 and 2, the present worth factor for the
life-cycle M&O costs with a linear increasing cash flow profile
for an n-year project and an interest rate / was shown to be

_(L+D"-ni-1
2+

(P/Glﬁl.’n) n>1

The results in Refs. 1 and 2 show that the life-cycle cost for
a project can be grossly underestimated (or overestimated) if
the operating costs increase (or decrease) uniformly over time
rather than being constant as is often assumed in project
economic evaluations. This model is a good first step forward
for analyzing life-cycle M&O costs, but a more general model
is really needed to supplement Appendix E in the DSN Life-
Cycle Cost Analysis Handbook. This appendix is entitled,
“Tools for Calculating a Life-Cycle Cost.” The following theo-
retical development will substantially improve the tools avail-
able to do a life-cycle cost analysis for most cash flow profiles
that we will probably encounter in the DSN. It will no longer
be necessary to make such simplifying assumptions as uniform
annual M&O costs or linear M&O costs. The following model,
which is based on the recent developments in Ref. 4, will allow
us to calculate the life-cycle M&O costs for a generalized cash
flow profile.

ill. A General Life-Cycle Cost Mathematical
Model

A. Formulation of the Model

The cash flow profile for an n-year project can often be
approximated by some M degree polynomial of the form:

= M Sy -
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where Cy, Cy, -+, Cy are constants and y is the amount of
cash flow in year x. We assume that this profile can be
represented as a series of discrete annual payments (see Fig, 1).
Throughout this paper, discrete compounding of interest is
used and, for simplicity, cash flows are assumed to be in
dollars. We use (x ~ 1) instead of x in Eq. (1) to be consistent
with standard engineering economic texts (Refs.5 and 6)
where the cash flows for a linear gradient have their first costs
occurring at the end of year 2.

All results ‘are based on annual cash flows and an annual
interest rate. However, the results may be extended to any
type of periodic cash flow if an appropriate interest rate is
used. For example, the above polynomial may be used to
describe cash flows on a monthly basis, where n represents the
number of months in the project lifetime. The subsequent
analysis would then require a monthly interest rate.

We will first consider the most basic form of Eq. (1). In this
case, the cash flow y in year x of a specific n-year project is
determined by the equation

y=(x-D¥M 1<x<n (2
for a suitable choice of integer M > 1 (refer to Fig. 2). The

present worth in year zero of the total cash flow of this
project at an annual interest rate 7 is:

(P/G,, i) = i(x— DM+ M=1)  (3)
=2

We will now construct a more tractable equation for the
present worth of the M&Q life-cycle costs. Equation (3)
reduces to the following after algebraic manipulation

(P/G,y,1,m) = % 2, Ve +)™ o @1=>1)
x=1

i(1+nHe
C))
where V is the backward difference operator:
Moo .
VM) = M- (x- DM = Z (k )xM"" -1D*1 (5)
k=1
and (%) is the binomial coefficient
M
k(M - k)

By substituting Eq. (5) into Eq. (4), we have

1 n M
PG _,i,n) = 7

m,

(-’;cf[)xM—k 1R (1 +1)™
x=1 k=1

nM

i(1+)?
which reduces to the recursive formula
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Thus, (P/Gyy,i,n) is a linear combination (P/G,,i,n)
(P/Gls isn)’ e 1(P/GM’...1, i:n)'

In Table 1, we present closed-form solutions for

(P/Gyy,i,m), when M=0,1,2,3,4,0r5.

We feel that using M <3 will provide sufficient accuracy
for most LCC project evaluations in the DSN. In addition, this
model will be useful for doing sensitivity and risk analyses for
LCC studies.

B. Special Cases

There are two cases of special engineering interest. The first
concerns the limiting behavior of the present worth as the
project life n becomes infinite. This behavior is important
when evaluating projects that have long lifetimes of more than,
say, 20 years, like a DSN antenna. The second case is when the
interest rate approaches zero. This can be used for doing quick
engineering calculations where the interest and inflation rates
nearly cancel. This was shown to be the case for the DSN
(Ref. 3).

1. Infinite project life. The effect of discounting causes the
present worth (P/G,,, i, n) of a project to converge as the
lifetime n becomes infinite. This can be verified by applying
the ratio test to the terms of the infinite series generated from
Eq. (3). Thus, (P/Gy,i,n) exhibits asymptotic behavior as .
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n - oo, If the interest rate is not zero, a recursive formula for
this asymptotic level is:

FO4,0) = lim (P/Gyy,1,m) = L Z ( Je 1M1 B, i)
=1

_1\M
+ 11) , M>1

where F(0, /) = 1/i. This formula was derived by taking limits

in Eq. (6). In Table 2, the limiting values are summarized for
M=0,1,2,3,4,and 5.

These results are very useful for evaluating fapilitigs that are
expected to have a long lifetime, like DSN antennas.

2. Zero interest rate. The second case of special interest in
the DSN concerns the limiting behavior of the present worth
as the interest rate i approaches zero. We will now develop
closed-form solutions for these limiting cases. We can avoid
taking limits of the closed-form expressions in Table 1 by
considering the simpler case of Eq. (3). Using this equation,
the present worth of the zero-interest form of the basic model
forM=>1is

n n-1
®/G,, 0%, m) = 3 (- DY = F 7 xM
x=2 . x=1

In this special case, the present worth is just the sum of the
Mth powers of the first »~ 1 positive integers; closed-form
expressions for this sum are widely available (Ref. 7). Based on
our definition of (P/G,, 1, n), this present worth is n when
M=0. In Table 2, the limiting values are summarized for
M=0,1,2,3,4,and 5.

C. Application of the LCC Model

We will now discuss how one applies the model and then
give an example. As described in subsection III-A, the pre-
dicted cash flow profile of an n-year project can be approxi-
mated, in general, by some Mth-degree polynomial of the form
given in Eq. (1). Consequently, the cash flow y in year x
has M + 1 components; a constant cost of size Cy, a linear
cost of size C,; * -+, and a Mt-degree cost of size C),. Hence,
we can determine the total present worth PW, o of a project
having this cash flow profile by finding the correspondmg
linear combination of basic present worths (P/G,, I, n),
(PIGy,i,n), =+, (P[Gypy, i, m):

PWyce = CoyBlGyptym) 4+ C (PG, i)
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This method will be described in more detail in subsection
I.D.

In most real-life situations, the future cash flow profile is
determined by an equation of the form
y = By xMe By, M4 4B xtB, )

where y is the cash flow in year x. Accordingly, Eq.(7) is
converted to the required form of Eq. (1) by using the identity

-M

G= 2 m(y) imona
k=j

It should be noted that repeated applications of this model
may be necessary to evaluate the present worth of the total
LCC. For example, suppose we found polynomials y, and
v, corresponding to the cash flow profiles for initial invest-
ment costs and for annual maintenance and operations costs,
respectively, as shown in Fig, 3. Since the initial investment
costs begin in year 1, we may directly apply the general
model to the cash flow polynomial y, to get R,, the present
worth in year zero of the initial investment costs. Next, we
apply the general model to v, to get the present worth in year
n' of the annual operatlng costs, We then apply the present
worth, factar (P/F,1,n')= 1/(1+ )" to the result to get R,,
the present worth in year zero of the annual operating costs.
Finally, the present worth in year zero of the total LCC is the
sumof R, and R,.

The polynomial form that one uses to represent the yearly
cash flows can be developed either by curve-fitting or from a
forecasting model.

Equivalent uniform annual cost (EUAC) computations can

easily be performed by converting the previous present worth
calculations to a leve] annuity:

EUAC = (P[G,, i, n) (P[G 1, n) ™!

where
B[Gy, 1)~ = i1+ )"[(1+ D" - 1]

is the capital recovery factor at interest rate 7.

D. Example

This section gives an example of how one might apply the
above model in an economic analysis of a proposed project in
the DSN, Let’s consider, as an illustration, the introduction of




increased automation at a Deep Space Station, to reduce
operating costs (Refs. 8 through 11). A strong effort has been
made since 1969 to reduce operating costs by reducing the
number of people at the station. For example, the crew size at
a station has been reduced from 26 people in 1969 to 4 today.
However, this automation requires large capital investments
that must be justified using an LCC analysis. The capital
expenditures required must be compared to the reduction in
future operating and maintenance costs. Qur following
example will look at the present value of the projected M&O
cash flows for an existing system during its entire life.

Suppose, for example, that the future operating costs of
one part of the Deep Space Station are expected to vary
according to the second-degree model

y = 6x2-11x+10
where y is the operating costs (in units of $10,000 for this
example) at year x, and year zero is taken to be the startup

time of the automation project. This polynomial has the form
of Eq. (7) and thus is rewritten as

y=6(-1D*+(x-1+5

to coincide with the form of Eq. (1). The present worth of the
operating costs at 10 years after startup is '

PW, oo = 6(PIG,, 10%, 10) + (P/G,, 10%, 10)

+5(P(G,, 10%, 10)

Using the formulas in Table 1 with {=0.10 and # =10, we
have

(P/G,, 10%, 10) = 6.1446
(P/G,, 10%, 10) = 22.8913

(P/G,, 10%, 10) = 133.7292

Therefore,

PWLC'C'

6(133.7292) + 22.8913 + 5(6.1446)

8.56 million dollars

Therefore, if our implementation cost for automation is less
than 8.56 million dollars, the expenditure is justified.

Compared to conventional discounting of individual cash
flows, this model is very helpful when different polynomials

for cash flow prediction exist in several subsystems of one
complex system. For example, in a Deep Space Station there
will be different cash flow polynomials for the antenna,
receivers, and transmitters.

IV. Graphical Review of Results

We examined the behavior of the general present-worth
(PIGyy, 1, n) as a function of three parameters: the order M of
the cash flow model, the prevailing cost of capital /, and the
project life x.

First, using the formulas in Table 1, (P/G,,, 10%, n) was
calculated for values of M between 0 and 5 and for project
lifetimes of from 2 to 15 years. These results are shown in
Fig. 4. For M =0 and 1, the graphs will quickly approach the
asymptotic limits described in Table 2.

Next, we performed a graphical sensitivity analysis of the
relative effects of the parameters { and M on the present-worth
function (P/Gy,,i,n), M=0, 1, 2, 3. For each of these values
of M, semilogarithmic plots similar to those in Fig. 4 were
made for interest rates of 5%, 10%, and 15%. These results are
presented in Fig. 5 and show four families M =0, 1, 2, 3) of
present-worth curves at three interest rates (5%, 10%, 15%).
We can see from Fig. 5 that M has a more significant impact on
the LCC present value (P/Gy,1,n) than does the interest
rate {. For example, increasing M from 2 to 3 increases the
present worth by a factor of about 6, for interest rates of 5%
or 10%. However, decreasing i from 10% to 5% increases the
present worth only by a factor of about 1.4, for ¥ =2, or 3.

The next section deals with approximating the logarithm of
these curves by linear functions, for a 10-year project life. The
approach that will be presented is valid for any project life,
but a 10-year project life is of interest to the DSN and several
U.S. government agencies, where it is used as a benchmark in
evaluating many projects.

V. Simplified Model for a Project With a
Ten-Year Life Cycle

Figure 6 is a semilogarithmic graph of (P/Gy,, 1, 10) as a
function of the interest rate i (1% to 15%). Since the six plots
in this figure are nearly straight lines, log,, (P/Gy;, i, 10) may
be approximated by a linear function for each value of M.
Consequently, the present worth may be approximated by
much simpler formulas than those given in Table 1. Six linear
regressions on log,, (P/Gys, 1, 10) were performed and the
resulting functions f,,(/) that approximate (P/G,,, i, 10) are
presented in Table 3. Clearly, log,y f3,({) produces a straight
line for each M.
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The functions in Table 3 are very good approximations of
the complex formulas in Table 1. The maximum relative error
is only 1.7% and the average relative error is only 0.7%.
Returning to the example in subsection III-F, we have

PW, o = 6(PIG,, 10%, 10) +(P|G , 10%, 10)
+5 (PG, 10%, 10)

We now use the values given in Table 3 to get

]

PW, . = 6f, (10%) + f, (10%) + 5f, (10%)

n

0.1 0.1 0.1
65,701 +8,T%1 +585 T

8.62 million dollars

(vs. 8.56 million dollars as calculated in subsection III-F. using
the exact equation). The relative error between these figures is
only 0.7%. This is well within the accuracy of most project
economic models.

Most U.S. government agencies, such as NASA, the Navy,
and the Department of Defense, use a value of i = 10% in their
calculations (Ref. 12). Table 4 gives the value of f;,(;) for
i =10%. Now it is very easy to estimate the life-cycle cost for
projects in the DSN by simply using the results in Table 4.
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Vi. Summary

We have constructed a mathematical model for determining
the present worth of the life-cycle costs of a project when the
expected future disbursements can be approximated by a
general polynomial function, and we have illustrated by means
of an example the application of the model. This model is a
generalization of a basic model that has the future cash flows
predicted by the equation y = (x - 1)™, where y is the ex-
pected costs of the proposed project of year x. The model
extends the usual engineering economic models of a level
annuity (M = 0) and a linear gradient (M = 1). We then devel-
oped closed-form expressions of (P/Gy,i,n) for M=0
through M = 5.

Limiting cases of the model were also examined, and we
found that in the case of an infinite project life or a negligible
interest rate, the present worth calculation could be consider-
ably simplified. A method for computing equivalent uniform
annual costs was also presented.

The present worth (P/G,,, i, n) is a function of the interest
rate i, the estimated project life », and the degree M of the
predicting equation. A graphical sensitivity analysis of the
model showed that the parameter M corresponding to the
degree of the predicting equation was more influential in
determining the present worth (P/Gy,, 7, n) than the interest
rate ;. For a project with a 10-year life, graphical analysis
showed that approximations of the present worth expressions
could be developed using linear regression. These approxima-
tions are much simpler than the original expressions and have
the advantage of introducing an average error of only 0.7%.

By using the results developed here for the DSN, the
life-cycle cost calculation will be greatly simplified when com-
paring projects. :
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Table 1. Closed-form solutions for the basic model (n > 1)

I P/Gyp 1, 1)
o —L—  q(a+p™loq
i1+
1 n
1 o [+)"~ni-1]
2 (1+0)
2 e (DT n - 2n -2
2+
3 L A2 A () o n3B - Gn? #3046 (1 + D i- 6]
4 N
i (1+D)
4 = 1 = (D™ 11 @™ 11 @ Q)" a4 6n? +an 4 1) P - (1202 4240 + 18) 2
£+

~ (24n +36) i - 24]

5 5 [+ 126 @+ P66 L+ 2426 L+ 4 (140" - 155 - 50+ 100% + 1002 + 50+ 1)1 — (2003
@+

+60n% + 70n +30) > ~ (600 + 180n + 150) i2 ~ (1201 + 240) i - 120]

Table 2. Asymptotic levels for the basic model

M Infinite project life, lim (P/GM, i,n) Zero interest rate, lim (P/GM, i, n)
0> o0 i-0

0 1/i (1+1) n-1

1 1/i2 % ~nm)2

2 ¢ + 23 2n® = 3n% +n)/6

3 @2 +6i + 6)/i* - 22 +n?y/4

4 @ + 14i% + 361 + 24)4° (6n° = 15n* + 10n3 - n)/30

5 @* + 30 + 1502 + 240 + 120)/16 (2n® ~6n° +50* —n?y12
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(PlGyp 1, 10) = fy i) = Sy + Ty

. M -5

M $,,/10 Ty X 10

0 9.739 108

1 4.390 16.01

2 2.785 7.008

3 1.981 4.228
4 1.501 3,033

5 1.183 2.403

Table 4. Approximations for (P/G,,, 10%, 10)

(P/GM, 10%, 10) ~ f,,(10%)

i M £,(10%)/1 oM Relative error, %
0 6.193 0.78
1 2.306 0.75
2 1.347 0.71
3 0.911 0.8
4 0.608 0.66
5 0.514 0.65
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